US009477562B1

a2 United States Patent

Nikuie et al.

US 9,477,562 B1
Oct. 25, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

APPARATUS AND METHOD FOR
MINIMIZING EXCLUSIVE-OR (XOR)
COMPUTATION TIME

Applicant: Microsemi Storage Solutions (US),
Inc., Aliso Viejo, CA (US)

Inventors: Mohammad Nikuie, Saratoga, CA

(US); Ihab Jaser, San Jose, CA (US)

Assignee: Microsemi Storage Solutions (US),

Inc., Aliso Viejo, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 77 days.

Appl. No.: 14/694,986

Filed: Apr. 23, 2015

Int. CL.

GO6F 11/00 (2006.01)

GO6F 11/20 (2006.01)

GO6F 3/06 (2006.01)

U.S. CL

CPC ... GO6F 11/2017 (2013.01); GO6F 3/061

(2013.01); GO6F 3/0646 (2013.01); GO6F
3/0689 (2013.01)
Field of Classification Search
CPC .. GO6F 11/2017; GOGF 3/061; GOGF 3/0646;
GOGF 3/0689
See application file for complete search history.

102

(56) References Cited

U.S. PATENT DOCUMENTS

4,918,600 A * 4/1990 Harper, IIT .......... GO6F 12/0607
711/157

8,156,401 B2 4/2012 King et al.

8,539,326 B1* 9/2013 Nethercot ............... GO6F 11/10
707/699

OTHER PUBLICATIONS

Deng, et al., “Self-Adjusting Constrained Random Stimulus Gen-
eration Using Splitting Evenness Evaluation and XOR Constraints,”
Asia and South Pacific Automation Conference,Yokohama, pp.
769-774 (Jan. 19-22, 2009).*

* cited by examiner

Primary Examiner — Albert Decady

Assistant Examiner — Kyle Vallecillo

(74) Attorney, Agent, or Firm — Glass & Associates;
Kenneth Glass; Mark Peloquin

(57) ABSTRACT

A line of data is read from a line of memory. Intended data
is specified by a random location and a random size within
the line of memory. The line of data is moved into temporary
storage. The line of data and a zero are multiplexed using a
control signal to output a line of adjusted data which is
automatically aligned to an initial point in an XOR buffer. A
starting index of the intended data within the line of adjusted
data corresponds to the initial point within an XOR buffer.
An XOR operation is performed on the line of adjusted data
and a line of data read from the XOR buffer to obtain a
modified line of XOR data. The modified line of XOR data
is written back to the XOR buffer at the same buffer
locations as the line of data read from the XOR buffer.
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1
APPARATUS AND METHOD FOR
MINIMIZING EXCLUSIVE-OR (XOR)
COMPUTATION TIME

BACKGROUND OF THE INVENTION

1. Field of Invention

The invention relates generally to data redundancy, and
more specifically to apparatuses and methods for increasing
the execution speed of an exclusive-OR (XOR) process.

2. Art Background

In data processing systems, hardware failure is an ever
present possibility which system providers must anticipate
and provide for in system designs so that data integrity is
preserved and the user experience can be free from data loss.
Thus, data protection and recovery is paramount to the user
experience. There are various ways of providing data pro-
tection. Techniques such as Random Array of Independent
Disks (RAID) have been developed to provide redundant
storage of data on multiple disk drives since the possibility
of simultaneous failure of more than one disk drive at a time
is very low. RAIDS is one of several RAID architectures that
can be used to provide data redundancy. In RAIDS, redun-
dant data is calculated and then the original data and the
calculated redundant data are distributed across multiple
storage devices. Redundant data is calculated with an exclu-
sive-OR (XOR) operation. In the case of a disk or storage
system failure, the redundant data is used to recover the
original data. Calculation of redundant data during the XOR
operation presents extra computation cycles for the data
processing system which can slow down system perfor-
mance. This can present a problem.

XOR operation is an essential part of any RAID data
protection system. Redundant data, calculated with an XOR
process, must be computed efficiently with minimum impact
to system performance. As user data flows from volatile
memory to a storage device, it must be XORed with its
corresponding XOR buffer. This operation may occur many
times as pieces of data flow through, thereby requiring an
XOR operation to be performed at different specific loca-
tions in the XOR buffer. User data can have an offset in
memory which differs from its corresponding offset in an
XOR buffer. An approach to this problem of different offsets
may require a system to have a fixed offset or place other
restrictions on the memory architecture which will limit the
usefulness or flexibility of the system such as increasing
clock cycles needed to move an amount of data. All of this
presents a problem.

SUMMARY

In one or more embodiments, a method to increase
exclusive-OR (XOR) computation speed, includes reading a
line of data from a line of memory. Intended data is specified
by a random location and a random size within the line of
memory. The line of data is moved into temporary storage.
The line of data and a zero are multiplexed using a control
signal to output a line of adjusted data. A starting index of
the intended data within the line of adjusted data corre-
sponds to an initial point within an XOR buffer. An XOR
operation is performed on the line of adjusted data and a line
of data read from the XOR buffer to obtain a modified line
of XOR data. The modified line of XOR data is written back
to the XOR buffer at the same buffer locations as the line of
data read from the XOR buffer.

In one embodiment, a command that initiates the reading
is accompanied with the random location, the initial point,
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2

and the random size. In one or more embodiments, the
temporary storage is constructed with an array of flip-flops.
In one embodiment, the array is organized in eight lines of
256 flip-flops per line.

In one embodiment, four successive lines of the array are
concatenated into a group during a given cycle. In one
embodiment, the eight lines are concatenated into eight
groups of four successive lines, wherein a first group 3210
includes lines 3, 2 1, and 0, a second group 4321 includes
lines 4, 3, 2, and 1, a third group 5432 includes lines 5, 4,
3, and 2, a fourth group 6543 includes lines 6, 5, 4, and 3,
a fifth group 7654 includes lines 7, 6, 5, and 4, a sixth group
7765 includes lines z, 7, 6, and 5, a seventh group zz76
includes lines z, z, 7, and 6, and an eighth group zzz7
includes lines z, z, z, and 7, where z represents unusable
storage area. In one embodiment, the first group 3210
alternatively includes lines 2, 1, 0, and z where z represents
unusable storage area. In one embodiment, the second group
alternatively includes lines 3, 2, 1, and 0.

The multiplexing outputs adjusted data. The adjusted data
is zero padded at all locations below the starting index and
above the random size of intended data. A stripe size of a
redundant array of independent disks (RAID) is related to
the random size of the intended data.

In one or more embodiments steps A, B, and C are
performed in the same clock cycle, the method includes: (A)
reading XOR buffer data from address n; (B) wherein the
performing uses XOR buffer data read from address n-2 and
corresponding adjusted data to obtain an XOR output; and
(C) wherein the writing writes the XOR output from Step
(B) to address n-2.

In one or more embodiment, the performing uses adjusted
data, which is output from a multiplexer. A line of data is
read from a line of memory. Intended data is specified by a
random location and a random size within the line of
memory. The line of data is loaded into temporary storage.
The line of data and a zero value are multiplexed using a
control signal to output a line of adjusted data. A starting
index of the intended data within the line of adjusted data
corresponds to an initial point within an XOR buffer.

In one or more embodiments, a system to increase exclu-
sive-OR (XOR) calculation speed includes a processor. The
processor issues a command to move data from a memory to
temporary storage. The command specifies intended data at
a random location and of a random size within the memory
and an initial point within an XOR buffer. Control logic
forms at least one group of lines within the temporary
storage and provides a control signal using the command. A
multiplexer is controlled by the control signal. The multi-
plexer multiplexes data from the at least one group of lines
and a zero value to output adjusted data in alignment with
the initial point within the XOR buffer. An XOR circuit
receives inputs of adjusted data and data read from an XOR
buffer. An output of the XOR circuit is written back to the
XOR buffer at the same XOR buffer locations as the data
read from the XOR buffer.

In one or more embodiments, the random location and the
random size is relative to a line of the memory. The control
logic uses the command to provide the control signal to the
multiplexer in order to output adjusted data such that a
starting index of the intended data corresponds to the initial
point within the XOR buffer. Zero values exist in the
adjusted data before the starting index and after the random
size of the intended data.

In one embodiment, system timing is configured to read
address n of the XOR buffer and to write to address n-2 of
the XOR buffer during the same clock cycle.
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In one embodiment, the output (c) of the XOR module is
part of a redundant array of independent disks (RAID)
stripe. In one embodiment, the level of RAID is RAIDS. In
one embodiment, a stripe size is related to the random size
of the intended data.

In one embodiment, a maximum offset in the temporary
storage array is within a range of 0 to 992, and a maximum
offset into the XOR buffer is within a range of 0 and 992.

In one embodiment, the memory is a dynamic random
access memory (DRAM) device.

In one or more embodiments, an apparatus to increase
exclusive-OR (XOR) calculation speed includes control
logic which is used to form at least one group of lines within
a temporary storage array and to provide a control signal
using a command issued from a processor. The temporary
storage array receives data from a memory in response to the
command. A multiplexer is controlled by the control signal
and multiplexes data from the at least one group of lines and
a zero value to output adjusted data. An XOR circuit
receives inputs of adjusted data and data read from an XOR
buffer. An output of the XOR circuit is written back to the
XOR buffer at the same XOR buffer locations as the data
read from the XOR buffer.

In one or more embodiments, the command contains a
request for intended data at a random location and of a
random size within a line of the memory, and a correspond-
ing initial point within an XOR buffer. The control logic uses
the command to provide the control signal to output the
adjusted data such that a starting index of the intended data
corresponds to the initial point within the XOR buffer. Zero
values exist in the adjusted data before the starting index and
after the random size of the intended data.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments of the invention. The inven-
tion is illustrated by way of example in the embodiments and
is not limited in the figures of the accompanying drawings,
in which like references indicate similar elements.

FIG. 1 illustrates a method, according to embodiments of
the invention.

FIG. 2 illustrates automatic alignment of data, according
to embodiments of the invention.

FIG. 3 illustrates results of an exclusive-OR (XOR)
operation as used in embodiments of the invention.

FIG. 4A illustrate an architecture for temporary storage,
according to embodiments of the invention.

FIG. 4B illustrate an architecture for an exclusive-OR
(XOR) buffer, according to embodiments of the invention.

FIG. 5 illustrates a logical grouping of temporary storage
for a first cycle from the architecture presented in FIG. 4A
and FIG. 4B, according to embodiments of the invention.

FIG. 6 illustrates a logical grouping of temporary storage
for a second cycle from the architecture presented in FIG.
4A and FIG. 4B, according to embodiments of the invention.

FIG. 7 illustrates a logical grouping of temporary storage
for a third cycle from the architecture presented in FIG. 4A
and FIG. 4B, according to embodiments of the invention.

FIG. 8 illustrates a logical grouping of temporary storage
for an eighth cycle from the architecture presented in FIG.
4A and FIG. 4B, according to embodiments of the invention.

FIG. 9 illustrates an alternative logical grouping of tem-
porary storage for a first cycle from the architecture pre-
sented in FIG. 4A and FIG. 4B, according to embodiments
of the invention.
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FIG. 10 illustrates a logical grouping of temporary storage
for a ninth cycle from the architecture presented in FIG. 4A
and FIG. 4B, according to embodiments of the invention.

FIG. 11 A illustrates a flow diagram, according to embodi-
ments of the invention.

FIG. 11B illustrates equations for variables used in con-
junction with the architecture of FIG. 4A through FIG. 11A,
according to embodiments of the invention.

FIG. 12 illustrates a circuit for outputting adjusted data,
according to embodiments of the invention.

FIG. 13 illustrates a data pipeline for accomplishing one
clock cycle exclusive-OR (XOR) process, according to
embodiments of the invention.

FIG. 14A illustrates a data processing system, according
to embodiments of the invention.

FIG. 14B illustrates the card from FIG. 14A, according to
embodiments of the invention.

DETAILED DESCRIPTION

In the following detailed description of embodiments of
the invention, reference is made to the accompanying draw-
ings in which like references indicate similar elements, and
in which is shown by way of illustration, specific embodi-
ments in which the invention may be practiced. These
embodiments are described in sufficient detail to enable
those of skill in the art to practice the invention. In other
instances, well-known circuits, structures, and techniques
have not been shown in detail in order not to obscure the
understanding of this description. The following detailed
description is, therefore, not to be taken in a limiting sense,
and the scope of the invention is defined only by the
appended claims.

Automatic alignment during exclusive-OR (XOR) opera-
tions is described. Data from memory having random width
and random offset is automatically aligned to an XOR buffer
having a random width and random offset. The automatic
alignment permits a read-modify-write from/to the XOR
buffer to be performed within one clock cycle, which
minimizes the computation time needed for an XOR pro-
cess. Minimizing computation time is used synonymously
with increasing XOR computation speed herein.

FIG. 1 illustrates, generally at 100, a method, according to
embodiments of the invention. With reference to FIG. 1, an
exclusive-OR calculation process begins at a block 102. As
used in this detailed description of embodiments, redundant
data calculated by an XOR process will be referred to as
XOR data or XORed data. At a block 104, user data or
intended data is read from memory. The memory can be, for
example, a dynamic random access memory (DRAM) which
is used by a processor, which can be part of a computing
device such as a computer, data acquisition system, etc.
Within these examples, no limitation is implied by use of
DRAM as the source for the user data, as embodiments of
the invention are applicable to any form of memory and
process where an XOR operation is used to process data. For
clarity of presentation and simplicity in use of language,
DRAM will be used in this description of embodiments,
however it is to be recognized that no limitation is implied
thereby. The data read from DRAM at the block 104 is of
random size and random offset within a memory line. Note
that the chunk of data read from DRAM can be up to several
memory lines long. In one or more embodiments it can be
up to eight lines which is equal to 8x256=1024 bits. It can
also be smaller than a memory line, e.g., 4 bytes which
would be smaller than a single memory line. Embodiments
of the invention are applicable to various system architec-
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tures. For example, some system architectures will be built
using 256 bits per memory line. Other architectures will use
more than 256 bits per memory line. And yet other archi-
tectures will use less than 256 bits per memory line.
Embodiments of the invention are configured accordingly
with the architecture of a given system with a number of bits
used for a memory line.

As used in this description of embodiments, an “offset” of
the intended data is an index into a memory line which
designates where the intended data begins. Also as used in
this description of embodiments, an “offset” into an XOR
buffer is an index into the XOR buffer or equivalently an
initial point within the XOR buffer which designates a
location in the XOR buffer which corresponds to the offset
of the intended data within a memory line. Alternatively, the
offset of the intended data is referred to herein as a starting
index of the intended data. In general, the offset of the
intended data is not the same as the offset into the XOR
buffer. Thus, in various embodiments, at a block 106, an
offset of the intended data is aligned with a corresponding
offset into the XOR buffer. Once alignment of the offsets is
accomplished, the intended data is processed and the
XORed results are stored “packed” into the XOR buffer. As
used in this description of embodiments, “packed” is under-
stood to mean that the first bit of the intended data and all
subsequent bits, within the size specified by the read com-
mand, are processed by the XOR operation and are stored
contiguously in the XOR buffer without any skipped bit
locations.

At a block 108, the XOR process performs the XOR
operation on the intended data and the corresponding con-
tents of the XOR buffer. The XOR operation is performed
one memory line at a time and is described more fully below
with the figures that follow. During the operation of the
process in the block 108 the XOR process performs a
read-modify-write operation on different memory lines
within the same clock cycle thereby minimizing XOR
computation time or increasing XOR computation speed.
The process ends at a block 110.

FIG. 2 illustrates, generally at 200, automatic alignment
of data, according to embodiments of the invention. With
reference to FIG. 2, a memory line is indicated at 202.
Within memory line 202 a random amount of intended data
is indicated at 204 with designation “A.” The intended data
A has a starting index (location) indicated by 208 “CPL
offset.” A width of the intended data A 204 is indicated by
206 XOR size. Note that the width of the intended data A
204 is equivalent to a width within the XOR buffer, hence
the use of the term “XOR size” with reference numeral 206.

According to the systems and methods described herein
the indices of the intended data 202 are adjusted resulting in
adjusted data 212. Within adjusted data 212, the intended
data A 204 has been shifted into alignment with an XOR
buffer, such that its offset in the memory line now begins at
210 XOR offset. In addition, wherever the intended data
does not exist in the line of adjusted data 212, a zero value
is assigned thereto (zero padding). For example, the data
values at locations before 206 XOR size (region 216) are set
to zero and the data values at locations above {210 XOR
offse XOR size} (region 214) are also set to zero.

An XOR buffer line, which corresponds to the adjusted
data 212 is indicated at 222 before a write operation and is
indicated at 232 after the write operation. Note that within
the XOR buffer line 222, the locations corresponding to 204
(adjusted data 212) are indicated by 224 (XOR buffer line).
It is important to preserve the integrity of the XOR buffer by
not changing values in the XOR buffer which are not part of
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the stripe being processed. The only portion that can be
updated is the portion indicated by locations 224. The
portions of the XOR buffer line 222 below the XOR offset
210, indicated at 220, and above 224, indicated at 218 are to
remain untouched during the XOR operation with the
adjusted data 212.

Following an XOR operation with adjusted data 212 and
the XOR buffer line 222 the result is written back to the
XOR buffer line and is indicated as updated XOR buffer line
232. Within 232 a portion indicated as C 234 represents the
updated portion of the XOR buffer line. Note that the portion
220 and 218 have remained unchanged because of the zero
padding which was done to the adjusted data 212.

FIG. 3 illustrates, generally at 300, results of an exclusive-
OR (XOR) operation as used in embodiments of the inven-
tion. With reference to FIG. 3, a table 302 contains two
inputs to an exclusive-OR (XOR) operation which are
indicated as input A in column 304 and as input B in column
306. An output {C=A XOR B} of the exclusive-OR (XOR)
operation is indicated in column 308. Rows 310, 312, 314,
and 316 illustrate a range of values that the inputs 304 and
306 can assume. Referring back to FIG. 2, note that by zero
padding regions 214 and 216 in the adjusted data 212, the
contents of regions 218 and 220 are unchanged during the
XOR operation on the XOR buffer line 222 since a 0 at
column 306 and row 310 results in a O output from the XOR
operation as indicated in column 308 and row 310. Like-
wise, a 1 in column 306 and row 312 results in a 1 after the
XOR operation as indicated in column 308 at row 312. Thus,
the zero padding in the adjusted data preserves the contents
of'the XOR buffer line 222 which are not associated with the
adjusted data A 204 (FIG. 2).

As described above, the intended data is moved to tem-
porary storage prior to input into the XOR process. In
various embodiments, temporary storage can be realized
with different storage devices. In one or more embodiments,
temporary storage is realized with an array of flip-flops. In
one or more embodiments, the array of flip-flops is con-
structed with an array of flip-flops referred to herein as CPL
flops. Different architectures are possible. In this illustration,
an architecture is described which allocates a block of 256
bytes of data as the maximum amount of data that can be
retrieved from memory (DRAM) at a time in response to a
command issued by a processor. Each block of 256 bytes is
referred to herein as a completion. This architecture, which
supports a maximum of 256 bytes of intended data per
completion is used for illustration and does not limit
embodiments of the invention which can be configured to
handle sizes other than 256 bytes. FIG. 4A illustrate, gen-
erally at 400, an architecture for temporary storage, accord-
ing to embodiments of the invention. With reference to FIG.
4A, an array of CPL flops is organized in eight lines of 256,
i.e., C0O,Cl1, C2,C3, C4,C5,C6, and C7 each have 256 flops
per line which together provide storage for 256 bytes of data.
Each line of the CPL flops is 256 bits wide as indicated with
a starting position 430, which corresponds to bit zero, and
extends to bit 255 which is indicated at 432. As illustrated
in FIG. 4A, the lines are filled from right to left and from the
top line (CO) to the bottom line (C8) eight lines deep. A
request for intended data can encompass a portion of a single
line or it can span across multiple lines of the array 400. As
described above, the request is characterized by random
offset and random size with respect to a line of memory.

In the example shown in FIG. 4A, the request starts in line
CO at offset indicated at 404 coff and fills lines C1, C2, C3,
C4, C5, C6, and ends at 426 xend on line C7. An amount of
intended data which is moved into line CO is indicated at 410
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(256-coff), with starting index indicated at 406 and an end
index indicated at 408 for line CO. An amount of intended
data moved into line C7 is indicated at 478 (256-xend). The
read request issued by the processor includes dynamic
variables that are particular to the given request. These
dynamic variables include, the offset into the memory line
that specifies the start of the intended data (indicated by 404
coff), the size of the intended data (indicated in part by 426
xend), and a corresponding initial point within an XOR
buffer (e.g., 454 in FIG. 4B). The size of the intended data
is also synonymous with the size of the portion of the XOR
buffer which will correspond with the intended data, which
was also illustrated in FIG. 2 above. There is always a
one-to-one relationship between the size of the intended data
and the size of the portion of the XOR buffer which
corresponds with the intended data.

Data is read from DRAM a memory a full line at a time
even though the intended data might not occupy a full
memory line, thus an offset into the memory line is needed.
Note that the data which exists in line CO indicated at 442
is not used in the calculation but is read anyway because of
system architecture. Likewise, in line C7, the data stored in
locations represented by 444 does not modify the contents of
the XOR buffer because it is outside of the data size
associated with the current request. Each line is read a cycle
at a time. Thus, in the example of FIG. 4A, eight clock
cycles are required to fill the eight lines of CPL flops.

FIG. 4B illustrate, generally at 450, an architecture for an
exclusive-OR (XOR) buffer, according to embodiments of
the invention. With reference to FIG. 4B, the XOR buffer
450 is constructed with one continuous block of memory,
such as for example in one non-limiting embodiment RAM
memory is used. Following the architecture established for
the CPL flops, the XOR buffer 450 is configured in eight
lines of 256 bits as indicated at 486 by B0, B1, B2, B3, B4,
BS, B6, and B7. As described above, the processor issues
requests for intended data which are temporarily stored in
the CPL flop array 400 (FIG. 4A). A request for intended
data contains a size of the intended data, an offset into the
CPL flop array, and an offset into the XOR buffer. The
requests for intended data are used to build a stripe of data
in the XOR buffer which is ultimately written out to a
storage device such as a hard disk drive, RAID array, etc.
The problem of misaligned offsets is illustrated with the
example of FIG. 4A and FIG. 4B, note therein that the offset
into the CPL flop array (404 coff) is different from the offset
into the XOR buffer (454 xoff). Data from the CPL flop array
400, starting at bit location 406 is adjusted, processed by the
XOR operation to create XORed data, and the XORed data
is then loaded into the XOR buffer starting at the XOR offset
454 xoff bit location 456. This process starts by creating
logical groupings of the lines from the CPL flop array 400,
as described below in FIG. 5 through FIG. 11B, which will
then be used to create the XORed data as described below
in FIG. 12.

FIG. 5 illustrates, generally at 500, a logical grouping of
temporary storage for a first cycle from the architecture
presented in FIG. 4A and FIG. 4B, according to embodi-
ments of the invention. With reference to FIG. 5, completion
line C3, C2, C1, and CO are logically grouped into a group
502 which is used to shift intended data to adjusted data for
use in the first cycle. For ease of illustration, the offsets
shown in FIG. 4A and FIG. 4B are used again in the
discussion that pertains to FIG. 5 through FIG. 10. The offset
into line CO is indicated at 404 coff in FIG. 5. Region 442
indicates bits in line CO which are not part of the intended
data are therefore skipped by virtue of the offset into the
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CPL array 400. The amount of data from the CPL array 400
that will correspond with the XOR buffer 450 is indicated at
460 and contains an amount of bits given by {256-xoff}. An
equation used to identify this line of data for use with the BO
line of the XOR buffer 450 is given at 508 as
{Cpl_line=Grp3210[coff+256-xoff:cofl]}, where 3210 indi-
cates the group formed by lines C3, C2, C1, and CO from
CPL flop array 400, starting bit location indicated by coff
and ending bit location indicated by coff+256-xoff.

From the grouping illustrated, 256 bits are selected such
that adjustment is made for the offset into the CPL array. In
any read-modify-write operation to the XOR buffer, all or a
subset of the CPL_line bits are actually used to modify the
contents of the buffer. Pend has a fixed value through the
calculation in a given cycle and is equal to: pend=256-xoff.
This information is referred to as previous end and is
maintained in signal “pend.” For each cycle to cycle tran-
sition a new Cpl_line is formed with its correspondent
group. The start and end bits are picked for each clock cycle.
The start bit position will equal:start=pend+coff and the end
bit position will equal: end=pend+coff+256.

FIG. 6 illustrates, generally at 600, a logical grouping of
temporary storage for a second cycle from the architecture
presented in FIG. 4A and FIG. 4B, according to embodi-
ments of the invention. With reference to FIG. 6, completion
lines C3, C2, C1, and CO are logically grouped into a group
602 which is used to shift intended data to adjusted data for
use in the second cycle. 508 indicates data that would have
been read in the previous cycle, i.e., cycle one. The starting
bit location for the second cycle is indicated at 604. The
ending bit location for the second cycle is equal to: pend+
coff+256. 256 bits are read in the second cycle as indicated
at 606. The Cpl_line equation for the second cycle is given
at 608 as {Cpl_line=Grp3210[pend+coff+256:pend+cofl]},
where 3210 indicates the group formed by lines C3, C2, C1,
and CO from CPL flop array 400, starting bit location
indicated by pend+coft and ending bit location indicated by
pend+coff+256.

FIG. 7 illustrates, generally at 700, a logical grouping of
temporary storage for a third cycle from the architecture
presented in FIG. 4A and FIG. 4B, according to embodi-
ments of the invention. With reference to FIG. 7, completion
lines C4, C3, C2, and C1 are logically grouped into a group
702 which is used to shift intended data to adjusted data for
use in the third cycle. 608 indicates data that would have
been read in the previous cycle, i.e., cycle two. The starting
bit location for the third cycle is indicated at 704. The ending
bit location for the third cycle is equal to: pend+coff+256.
256 bits are read in the third cycle as indicated at 706. The
Cpl_line equation for the third cycle is given at 708 as
{Cpl_line=Grp4321[pend+coff+256:pend+coff]},  where
4321 indicates the group formed by lines C4, C3, C2, and C1
from CPL flop array 400, starting bit location indicated by
pend+coff and ending bit location indicated by pend+coff+
256.

The fourth, fifth, and sixth cycles are processed in like
manner to cycle three since these cycles process packed
lines of data. The Cpl_line equations for cycles four, five,
and six are illustrated in FIG. 11B.

FIG. 8 illustrates, generally at 800, a logical grouping of
temporary storage for an eighth cycle from the architecture
presented in FIG. 4A and FIG. 4B, according to embodi-
ments of the invention. With reference to FIG. 8, completion
lines Z, Z, C7, and C6 are logically grouped into a group 802
which is used to shift intended data to adjusted data for use
in the eighth cycle. 808 indicates data that would have been
read in the previous cycle, i.e., cycle seven. The starting bit
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location for the eighth cycle is indicated at 804. The ending
bit location for the eighth cycle is equal to “xend.” A number
of'bits read in the eighth cycle is equal to “xend” as indicated
at 806. The Cpl_line equation for the eighth cycle is given
at 808 as {Cpl_line=Grpzz76[pend+coff+xend:pend+cofl]},
where zz76 indicates the group formed by lines Z, Z, 7, and
6 from CPL flop array 400, starting bit location indicated by
pend+coff and ending bit location indicated by pend+coff+
xend. Lines 7Z and Z indicate placeholders but do not
represent actual storage locations in the CPL array from
which data could be read from.

FIG. 9 illustrates, generally at 900, an alternative logical
grouping of temporary storage for a first cycle from the
architecture presented in FIG. 4A and FIG. 4B, according to
embodiments of the invention. With reference to FIG. 9,
completion lines C2, C1, CO, and Z are logically grouped
into a group 902 which is used to shift intended data to
adjusted data for use in the first cycle. Region 442 indicates
bits in line CO which are not part of the intended data are
therefore skipped by virtue of the offset 904 into the CPL
array. The starting bit location for the first cycle is indicated
at 904. The ending bit location for the first cycle is equal to:
256-xoft. 256-xoff bits are read in the first cycle as indicated
at 906. The Cpl_line equation for the alternative first cycle
is given at 908 as {Cpl_line=Grp210z[coff+256-x0ff+256:
coff+256]}, where 210z indicates the group formed by lines
C2, Cl1, CO, and Z from CPL flop array 400, starting bit
location indicated by coff and ending bit location indicated
by coff+256-xoff. Line Z indicates a placeholder but does
not represent actual storage locations in the CPL array from
which data could be read from. The alternative grouping of
FIG. 9 yields results identical to those obtained with the
grouping of FIG. 5.

FIG. 10 illustrates, generally at 1000, a logical grouping
of temporary storage for a ninth cycle from the architecture
presented in FIG. 4B, according to embodiments of the
invention. It is often sufficient to use eight cycles to process
an amount of intended data. However, in some instances
nine cycles are required to process the intended data depend-
ing on the values of coff and xoff. With reference to FIG. 10,
completion lines Z, Z, 7, and C7 are logically grouped into
a group 1002 which is used to shift intended data to adjusted
data for use in cycle nine. 1010 indicates data that would
have been read in the previous cycle, i.e., cycle eight. The
starting bit location for the eighth cycle is indicated at 1004.
The ending bit location for the ninth cycle is equal to “xend.”
A number of bits read in the ninth cycle is equal to “xend”
as indicated at 1006. The Cpl_line equation for the alterna-
tive ninth cycle is given at 1008 as {Cpl_line=Grpzzz7
[pend+coff+xend:pend+coff]}, where zzz7 indicates the
group formed by lines Z, Z, Z, and 7 from CPL flop array
400, starting bit location indicated by pend+coff and ending
bit location indicated by pend+coff+xend. Lines Z, Z, and Z
indicate placeholders but do not represent actual storage
locations in the CPL array from which data could be read
from.

FIG. 11A illustrates, generally at 1100, a flow diagram,
according to embodiments of the invention. With reference
to FIG. 11A and FIG. 11B, a process to automatically align
intended data with its corresponding location in an XOR
buffer begins at a block 1102. At a block 1104 a processor
issues a command to move data from DRAM to temporary
storage. Temporary storage has been described above in
conjunction with previous figures and an architecture of a
CPL flops array has been illustrated in FIG. 4A. At a block
1106 logical groups are formed for computation within each
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10
clock cycle. Logical groups have been illustrated above in
conjunction with FIG. 5 through FIG. 10.

At a block 1108 a last cycle number test is performed. If
the current cycle is the last cycle then control transfers at
1110 to a block 1130. At this point, the cycle number is also
the first cycle. Variables are established and a form of the
completion line equation “Cpl_line” is established as illus-
trated in a table 1152 at a column 1154 (cycle 1) or in
alternative form at a column 1156 (cycle 1). After the
variables and the completion line equation are established in
Block 1130 operation on the data takes place. Operation on
the data includes forming adjusted data, reading the XOR
buffer, performing the XOR operation, and writing XORed
data back to the XOR buffer, all of which are described
below in conjunction with FIG. 12. Control then transfers to
a block 1132 where the process stops. If the current cycle is
not the last cycle at 1108 then control transfers at 1112 to
1122 where cycle number is tested. During the first clock
cycle control flows at 1124 to a block 1114 where the
variables are established for the first cycle and the comple-
tion line equation “Cpl_line” is established as illustrated in
table 1152 in column 1154 or the alternative form can be
used as illustrated in column 1156. After the variables and
the completion line equation are established in Block 1114
operation on the data takes place. Operation on the data
includes forming adjusted data, reading the XOR buffer,
performing the XOR operation, and writing XORed data
back to the XOR buffer, all of which are described below in
conjunction with FIG. 12.

After the operation on the data in the first cycle is
completed control moves at 1116 to a block 1118 and the
clock cycle is incremented. Control then flows at 1120 and
the last cycle number test is performed at 1108. When the
cycle number is not the last cycle, control transfers at 1112
to 1122. If the cycle number is not the first cycle then control
transfers at 1126 to a block 1128. At the block 1128 the
variables are established for the second cycle and the
completion line equation “Cpl_line” is established as illus-
trated in table 1152 in column 1154 (cycle 2) or the alter-
native form can be used as illustrated in column 1156 (cycle
2). After the variables and the completion line equation are
established in Block 1128 operation on the data takes place.
Operation on the data includes forming adjusted data, read-
ing the XOR buffer, performing the XOR operation, and
writing XORed data back to the XOR buffer, all of which are
described below in conjunction with FIG. 12. Control then
transfers to the block 1118 where the cycle number is
incremented. Control then transfers to 1120 and the cycle
number is tested for the last cycle number at 1108.

If the current cycle tested in 1108 is the last cycle, then
control transfers from 1110 to a block 1130 where variables
are established for the last cycle (which could be any cycle
from 1 to 9 depending on the size of intended data requested)
and a form of the completion line equation “Cpl_line” is
established as illustrated in table 1152 at column 1154 (cycle
8) or if needed at column 1156 (cycle 9), with appropriate
adjustment made to the group of completion lines depending
on which cycle constitutes the last cycle as established by
the size of the offsets and the size of the data. For example,
if the third cycle is the last cycle then in some embodiments,
the group formed would use completion lines z432 for the
third cycle. Operation on the data occurs at the block 1130
which includes forming adjusted data, reading the XOR
buffer, performing the XOR operation, and writing XORed
data back to the XOR buffer, all of which are described
below in conjunction with FIG. 12. Control then transfers to
a block 1132 where the process stops.
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FIG. 11B illustrates, generally at 1150, equations for
variables used in conjunction with the architecture of FIG.
4A through FIG. 12, according to embodiments of the
invention. With reference to FIG. 11B, a table 1152 contains
equations for the completion line variable “Cpl_line” which
is used to group bits of intended data for input to a process
to form adjusted data. One form for the Cpl_line equations
is given in column 1154 for cycles 1, 2, 3, 4, 5, 6, 7, 8, and
9. Alternative forms of the Cpl_line equation is given for
cycle 1 in column 1156. In the architecture described herein,
the offset into the intended data, variable “coff” has a range
of zero to 992 and the offset into the XOR buffer, variable
“xoff” has a range of zero to 992. Note that different
groupings of completion lines can be made with correspond-
ing changes to the range of the completion offset range and
the XOR buffer offset range.

FIG. 12 illustrates, generally at 1200, a circuit for out-
putting adjusted data, according to embodiments of the
invention. With reference to FIG. 12, a multiplexer 1202
receives as inputs 1204 where a grouping of completion
lines provides intended data from the CPL (completion)
flops (used for temporary storage) and a zero value at 1206.
The multiplexer receives a control signal at 1208. The input
1204 “MUXIn” is established cycle-by-cycle with the
appropriate grouping of completion lines. “Cycle#” is an
index for the Cpl_line grouping, the form of which is given
in table 1152 (FIG. 11B) for each cycle. A variable “xoff” is
the starting point within the XOR buffer. See for example
454 xoff in FIG. 4B which is the value of xoff used for cycle
one to process the bits in the BO line of the XOR buffer.
During cycles two through eight, “xoff” is equal to zero (488
in FIG. 4B) while the bits in lines B1, B2, B3, B4, B5, and
B6 are being processed in the XOR buffer because these
lines are packed. A variable “xend” is equal to 256 for all
cycles except the last cycle, where xend is computed based
on the size of the intended data. For example, in FIG. 4B,
484 indicates xend equal to 256 for cycles operating on lines
B0, B1, B2, B3, B4, BS, and B6. In cycle seven, xend is
given at 476 xend.

A variable “indx” is a loop index which is used to apply
the control condition to each bit of adjusted data moving
through the multiplexer 1202. Variable indx ranges from
zero to 255 and is reset to zero at the start of each cycle. The
control signal 1208 applies the condition [xoff>indx>xend].
If a value of indx is less than xoff then zero is output from
the multiplexer 1202. If the value of indx is greater than xoff
then a bit from the intended data is output from the multi-
plexer 1202 as adjusted data. If the value of indx is greater
than xend then zero at 1206 is output from the multiplexer
1202 as adjusted data 1210. In this way the intended data is
automatically aligned with the XOR offset essentially shift-
ing intended data from a position indicated qualitatively at
202 (FIG. 2) to position indicated qualitatively at 212 (FIG.
2).

Adjusted data 1210 is output from the multiplexer 1202
and is input to XOR circuit 1214 (e.g., XOR gate) along with
corresponding data read from the XOR buffer 1212. The
XORed data (output from the XOR circuit 1214) is written
back to the XOR buffer at 1218. Note that at this point, the
intended data has already been automatically shifted to its
proper location, and all un-intended bits are set to zero such
that this data can now simply be XORed with the contents
of the XOR buffer directly. Note that an input A to the XOR
operation is the output of the multiplexer adjusted DRAM
data 1210 and the input B to the XOR operation is the data
read from the XOR buffer. Thus, as illustrated in FIG. 3 at
column 308 for rows 310 and 312, when A is zero; A XOR
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B returns the value originally in B. Therefore, the zero
padded regions in the adjusted data 1210 (as illustrated
qualitatively by 214 and 216 in FIG. 2) ensure that the
regions in the XOR buffer that do not correspond with the
intended data remain unchanged.

In various embodiments, the circuit depicted in 1200
(with or without additional components illustrated in the
other figures) is implemented in an integrated circuit device,
which may include an integrated circuit package containing
the integrated circuit. As used in this description of embodi-
ments, the term “integrated circuit” is used synonymously
with the term “integrated circuit device.” Note also that the
term “integrated circuit” is understood to represent at least
a part of an integrated circuit but not necessarily what would
constitute an entire chip. In some embodiments, the circuit
1200 is implemented in a single integrated circuit die. In
other embodiments, the circuit 1200 is implemented in more
than one integrated circuit die of an integrated circuit device
which may include a multi-chip package containing the
integrated circuit. In various embodiments, the circuit indi-
cated in 1200 contains the CPL flip flop array and the XOR
buffer. The embodiments of the present invention are not
limited to any particular semiconductor manufacturing tech-
nology. Embodiments of the present invention can be imple-
mented using C-MOS, BIPOLAR, Silicon Germanium, or
other process technology. The process technologies listed
here are provided merely for example and do not limit
embodiments of the invention.

FIG. 13 illustrates, generally at 1300, a data pipeline for
accomplishing single clock cycle exclusive-OR (XOR) pro-
cess, according to embodiments of the invention. With
reference to FIG. 13, clock cycle number is indicated in a
row 1302. A corresponding XOR read address, which is
driven at the given clock cycle, is indicated by row 1304. A
corresponding XOR read data, which is accessed at the
given clock cycle, is indicated in a row 1306. A correspond-
ing XOR write address, which is driven at the given clock
cycle, is indicated in a row 1308. A corresponding XOR
write data, which is written in the given clock cycle, is
indicated in a row 1310. Note that reads and writes are
happening in the same cycle but they are happening within
different addresses (memory lines) in a given cycle. This
allows a read-modify-write to occur in the same clock cycle
which provides an XOR process with the minimum attain-
able execution time. In the example indicated at 1340, clock
cycle 2 (n), XOR read address A2 is being accessed, DO was
read two clock cycles prior (n-2) from the XOR buffer and
is being used to compute WO which is written to the AO
address in clock cycle 2 (n). Thus, a read-modify-write is
occurring within a single clock cycle but at different memory
addresses corresponding to different memory lines within
the XOR buffer.

FIG. 14A illustrates, generally at 1400, a data processing
system, according to embodiments of the invention. With
reference to FI1G. 14 A, as used in this description of embodi-
ments, data processing system can be a device such as a
computer, smart phone, tablet computer, etc. in which
embodiments of the invention may be used. The block
diagram is a high level conceptual representation and may
be implemented in a variety of ways and by various archi-
tectures. Bus system 1402 interconnects a Central Process-
ing Unit (CPU) 1404 (alternatively referred to herein as a
processor), Read Only Memory (ROM) 1406, Random
Access Memory (RAM) 1408, storage 1410, display 1420,
audio, 1422, keyboard 1424, pointer 1426, miscellaneous
input/output (I/O) devices 1428, and communications 1430.
RAM 1408 can also represent dynamic random access
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memory (DRAM). It is understood that memory (not shown)
can be included with the CPU block 1404. The bus system
1402 may be for example, one or more of such buses as a
system bus, Peripheral Component Interconnect (PCI),
Advanced Graphics Port (AGP), Small Computer System
Interface (SCSI), Institute of Electrical and FElectronics
Engineers (IEEE) standard number 994 (FireWire), Univer-
sal Serial Bus (USB), etc. The CPU 1404 may be a single,
multiple, or even a distributed computing resource. Storage
1410 may be Compact Disc (CD), Digital Versatile Disk
(DVD), hard disks (HD), solid state disk (SSD), optical
disks, tape, flash, memory sticks, video recorders, a redun-
dant array of independent disks (RAID), etc. Note that
depending upon the actual implementation of a computer
system, the computer system may include some, all, more,
or a rearrangement of components in the block diagram.
Thus, many variations on the system of FIG. 14A are
possible.

Embodiments of the invention are practiced within the
architecture illustrated in 1400. For example, the CPU 1404
issues commands to retrieve intended data from memory
1408 (e.g. RAM or DRAM, etc.) or RAID array 1410,
perform the processes described above to accomplish auto-
matic alignment of intended data with an XOR buffer,
perform XOR operation, and then write a stripe of data out
to a RAID array 1410. In various embodiments, the elements
in the figures illustrated above such as for example, memory,
temporary storage, control logic, XOR buffer, etc. can be
located on a card 1434 which connects to the bus 1402. In
other embodiments, these elements can be located with the
processor 1404. In yet other embodiments these elements
are distributed between the components shown in FIG. 14A.
In yet another embodiment RAID array 1410 coupled
directly to card 1434 such that card 1434 extends between
bus 1402 and RAID array 1410.

Connection with a network is obtained with 1432 via
1430, as is recognized by those of skill in the art, which
enables the data processing device 1400 to communicate
with devices in remote locations. 1432 and 1430 flexibly
represent communication elements in various implementa-
tions, and can represent various forms of telemetry, GPRS,
Ethernet, Wide Area Network (WAN), Local Area Network
(LAN), Internet connection, WiFi, WiMax, etc. and combi-
nations thereof.

In various embodiments, a pointing device such as a
stylus is used in conjunction with a touch screen, for
example, via 1429 and 1428.

FIG. 14B illustrates the card from FIG. 14A, according to
embodiments of the invention. With reference to FIG. 14B,
in one embodiment components are grouped together to
form an integrated circuit or part of an integrated circuit as
indicated at 1436. One grouping of components includes
temporary storage as represented by CPL flip-flops 1440,
which is coupled to control logic 1442. Control logic 1442
organizes the lines of flops from 1440 into logical groups as
described above in conjunction with the preceding figures,
such as FIG. 5 through FIG. 10. Control logic 1442 provides
a control signal 1450 to multiplexer 1444 as described above
in conjunction with the preceding figures such as FIG. 11A,
FIG. 11B, and FIG. 12. As described above in the discussion
pertaining to the preceding figures, the control parameter
1450 is used to control the multiplexer 1444 such that zero
values at 1448 are multiplexed with the data from temporary
storage at 1447 to form adjusted data 1464. Adjusted data
1464 is XORed with data read at 1462 from the XOR buffer
1470 with an XOR circuit 1460. An output 1466 of the XOR
circuit 1460 is written back to the XOR buffer 1470 at 1466.
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In various embodiments, the circuit depicted in 1436
(with or without additional components illustrated in the
other figures) is implemented in an integrated circuit device,
which may include an integrated circuit package containing
the integrated circuit. As used in this description of embodi-
ments, the term “integrated circuit” is used synonymously
with the term “integrated circuit device.” Note also that the
term “integrated circuit” is understood to represent at least
a part of an integrated circuit but not necessarily what would
constitute an entire chip. In some embodiments, the circuit
1436 is implemented in a single integrated circuit die. In
other embodiments, the circuit 1436 is implemented in more
than one integrated circuit die of an integrated circuit device
which may include a multi-chip package containing the
integrated circuit. The embodiments of the present invention
are not limited to any particular semiconductor manufactur-
ing technology. Embodiments of the present invention can
be implemented using C-MOS, BIPOLAR, Silicon Germa-
nium, or other process technology. The process technologies
listed here are provided merely for example and do not limit
embodiments of the invention. Moreover, in other embodi-
ments of the present invention, circuit 1436 is directly
coupled to RAID array 1410 and can extend between RAID
array 1410 and bus 1402.

For purposes of discussing and understanding the
embodiments of the invention, it is to be understood that
various terms are used by those knowledgeable in the art to
describe techniques and approaches. Furthermore, in the
description, for purposes of explanation, numerous specific
details are set forth in order to provide a thorough under-
standing of the present invention. It will be evident, how-
ever, to one of ordinary skill in the art that the present
invention may be practiced without these specific details. In
some instances, well-known structures and devices are
shown in block diagram form, rather than in detail, in order
to avoid obscuring the present invention. These embodi-
ments are described in sufficient detail to enable those of
ordinary skill in the art to practice the invention, and it is to
be understood that other embodiments may be utilized and
that logical, mechanical, electrical, and other changes may
be made without departing from the scope of the present
invention.

Some portions of the description may be presented in
terms of algorithms and symbolic representations of opera-
tions on, for example, data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those of ordinary skill in the data processing
arts to most effectively convey the substance of their work
to others of ordinary skill in the art. An algorithm is here, and
generally, conceived to be a self-consistent sequence of acts
leading to a desired result. The acts are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, trans-
ferred, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
elements, symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the discussion, it is appreciated that through-
out the description, discussions utilizing terms such as
“processing” or “computing” or “calculating” or “determin-
ing” or “displaying” or the like, can refer to the action and
processes of a computer system, or similar electronic com-
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puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission, or display devices.

An apparatus for performing the operations herein can
implement the present invention. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general-purpose computer, selectively activated
or reconfigured by a computer program stored in the com-
puter. Such a computer program may be stored in a computer
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, hard disks, optical disks,
compact disk-read only memories (CD-ROMs), and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), dynamic random access memo-
ries (DRAM), electrically programmable read-only memo-
ries (EPROM)s, electrically erasable programmable read-
only memories (EEPROMs), FLASH memories, magnetic
or optical cards, RAID, etc., or any type of media suitable
for storing electronic instructions either local to the com-
puter or remote to the computer.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general-purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method. For example, any of the
methods according to the present invention can be imple-
mented in hard-wired circuitry, by programming a general-
purpose processor, or by any combination of hardware and
software. One of ordinary skill in the art will immediately
appreciate that the invention can be practiced with computer
system configurations other than those described, including
hand-held devices, multiprocessor systems, microprocessor-
based or programmable consumer electronics, digital signal
processing (DSP) devices, set top boxes, network PCs,
minicomputers, mainframe computers, and the like. The
invention can also be practiced in distributed computing
environments where tasks are performed by remote process-
ing devices that are linked through a communications net-
work.

The methods herein may be implemented using computer
software. If written in a programming language conforming
to a recognized standard, sequences of instructions designed
to implement the methods can be compiled for execution on
a variety of hardware platforms and for interface to a variety
of operating systems. In addition, the present invention is
not described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the invention as described herein. Furthermore, it is common
in the art to speak of software, in one form or another (e.g.,
program, procedure, application, driver, . . . ), as taking an
action or causing a result. Such expressions are merely a
shorthand way of saying that execution of the software by a
computer causes the processor of the computer to perform
an action or produce a result.

It is to be understood that various terms and techniques
are used by those knowledgeable in the art to describe
communications, protocols, applications, implementations,
mechanisms, etc. One such technique is the description of an
implementation of a technique in terms of an algorithm or
mathematical expression. That is, while the technique may
be, for example, implemented as executing code on a
computer, the expression of that technique may be more
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aptly and succinctly conveyed and communicated as a
formula, algorithm, or mathematical expression. Thus, one
of ordinary skill in the art would recognize a block denoting
A+B=C as an additive function whose implementation in
hardware and/or software would take two inputs (A and B)
and produce a summation output (C). Thus, the use of
formula, algorithm, or mathematical expression as descrip-
tions is to be understood as having a physical embodiment
in at least hardware and/or software (such as a computer
system in which the techniques of the present invention may
be practiced as well as implemented as an embodiment).

Non-transitory machine-readable media is understood to
include any mechanism for storing information in a form
readable by a machine (e.g., a computer). For example, a
machine-readable medium, synonymously referred to as a
computer-readable medium, includes read only memory
(ROM); random access memory (RAM); magnetic disk
storage media; optical storage media; flash memory devices;
except electrical, optical, acoustical or other forms of trans-
mitting information via propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.); etc.

As used in this description, “one embodiment” or “an
embodiment” or similar phrases means that the feature(s)
being described are included in at least one embodiment of
the invention. References to “one embodiment” in this
description do not necessarily refer to the same embodiment;
however, neither are such embodiments mutually exclusive.
Nor does “one embodiment” imply that there is but a single
embodiment of the invention. For example, a feature, struc-
ture, act, etc. described in “one embodiment” may also be
included in other embodiments. Thus, the invention may
include a variety of combinations and/or integrations of the
embodiments described herein.

While the invention has been described in terms of several
embodiments, those of skill in the art will recognize that the
invention is not limited to the embodiments described, but
can be practiced with modification and alteration within the
spirit and scope of the appended claims. The description is
thus to be regarded as illustrative instead of limiting.

What is claimed is:

1. A method to increase exclusive-OR (XOR) computa-
tion speed, comprising:

reading a line of data from a line of memory, wherein

intended data is specified by a random location and a
random size within the line of memory;
moving the line of data into temporary storage;
multiplexing the line of data and a zero using a control
signal to output a line of adjusted data, wherein a
starting index of the intended data within the line of
adjusted data corresponds to an initial point within an
XOR buffer;

performing an XOR operation on the line of adjusted data
and a line of data read from the XOR buffer to obtain
a modified line of XOR data; and

writing the modified line of XOR data back to the XOR
buffer at the same buffer locations as the line of data
read from the XOR buffer.

2. The method of claim 1, wherein a command that
initiates the reading is accompanied with the random loca-
tion, the initial point, and the random size.

3. The method of claim 1, wherein the temporary storage
is constructed with an array of flip-flops.

4. The method of claim 3, wherein the array is organized
in eight lines of 256 flip-flops per line.

5. The method of claim 3, further comprising;

concatenating four successive lines of the array into a

group during a given cycle.
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6. The method of claim 5, wherein the eight lines are
concatenated into eight groups of four successive lines,
wherein a first group 3210 includes lines 3, 2 1, and 0, a
second group 4321 includes lines 4, 3, 2, and 1, a third group
5432 includes lines 5, 4, 3, and 2, a fourth group 6543
includes lines 6, 5, 4, and 3, a fifth group 7654 includes lines
7, 6,5, and 4, a sixth group z765 includes lines z, 7, 6, and
5, a seventh group zz76 includes lines z, z, 7, and 6, and an
eighth group zzz7 includes lines z, z, 7, and 7, where z
represents unusable storage area.

7. The method of claim 1, wherein the multiplexing
outputs adjusted data, the adjusted data is zero padded at all
locations below the starting index and above the random size
of intended data.

8. The method of claim 1, wherein steps A, B, and C are
performed in the same clock cycle, the method further
comprising:

(A) reading XOR buffer data from address n;

(B) wherein the performing uses XOR buffer data read
from address n-2 and corresponding adjusted data to
obtain an XOR output; and

(C) wherein the writing writes the XOR output from Step
(B) to address n-2.

9. A system to increase exclusive-OR (XOR) calculation

speed, comprising:

a processor, the processor to issue a command to move
data from a memory to temporary storage, the com-
mand to specify intended data at a random location and
of'a random size within the memory and an initial point
within an XOR buffer;

control logic to form at least one group of lines within the
temporary storage and to provide a control signal using
the command;

a multiplexer, the multiplexer controlled by the control
signal to multiplex data from the at least one group of
lines and a zero value to output adjusted data in
alignment with the initial point within the XOR buffer;
and

an XOR circuit, the XOR circuit to receive inputs of
adjusted data and data read from an XOR buffer
wherein an output of the XOR circuit is written back to
the XOR buffer at the same XOR buffer locations as the
data read from the XOR buffer.

10. The system of claim 9, wherein the random location
and the random size is relative to a line of the memory, the
control logic uses the command to provide the control signal
to the multiplexer in order to output adjusted data such that
a starting index of the intended data corresponds to the initial
point within the XOR buffer, zero values exist in the
adjusted data before the starting index and after the random
size of the intended data.

11. An apparatus to increase exclusive-OR (XOR) calcu-
lation speed, comprising:
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control logic to form at least one group of lines within a
temporary storage array and to provide a control signal
using a command issued from a processor, the tempo-
rary storage array to receive data from a memory in
response to the command;

a multiplexer, the multiplexer controlled by the control
signal to multiplex data from the at least one group of
lines and a zero value to output adjusted data; and

an XOR circuit, the XOR circuit to receive inputs of
adjusted data and data read from an XOR buffer
wherein an output of the XOR circuit is written back to
the XOR buffer at the same XOR buffer locations as the
data read from the XOR buffer.

12. The apparatus of claim 11, wherein the command to
contain a request for intended data at a random location and
of a random size within a line of the memory, and a
corresponding initial point within an XOR buffer, the control
logic to use the command to provide the control signal to
output the adjusted data such that a starting index of the
intended data corresponds to the initial point within the
XOR buffer, zero values exist in the adjusted data before the
starting index and after the random size of the intended data.

13. The apparatus of claim 12, wherein timing is config-
ured to read address n of the XOR buffer and to write to
address n-2 of the XOR buffer during the same clock cycle.

14. The system of claim 12, wherein the output of the
XOR circuit is part of a redundant array of independent disks
(RAID) stripe.

15. The system of claim 14, wherein a level of RAID is
RAIDS.

16. The system of claim 14, wherein a stripe size is related
to the random size of the intended data.

17. The system of claim 11, wherein the temporary
storage array is constructed with flip-flops organized in eight
lines of 256 flip-flops per line which form a contiguous
array.

18. The system of claim 17, wherein the eight lines are
concatenated into eight groups of four successive lines,
wherein a first group 3210 includes lines 3, 2 1, and 0, a
second group 4321 includes lines 4, 3, 2, and 1, a third group
5432 includes lines 5, 4, 3, and 2, a fourth group 6543
includes lines 6, 5, 4, and 3, a fifth group 7654 includes lines
7, 6, 5, and 4, a sixth group z765 includes lines z, 7, 6, and
5, a seventh group zz76 includes lines z, z, 7, and 6, and an
eighth group zzz7 includes lines z, z, 7, and 7, where z
represents unusable storage area.

19. The system of claim 12, wherein a line size is selected
from the group consisting of 256, 512, 2014, and a user
defined size.

20. The system of claim 11, wherein the memory is a
dynamic random access memory (DRAM) device.
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